
Use of UML

Jim Kowalkowski



Personal Case Tool Statement

• Experience shows that this environment
does not lend itself to a heavy-weight
development process and therefore should
be avoided as a project standard

• UML (Unified Modeling Language) is
useful outside a heavy development process



Diagram Types

• Class diagrams
• Static in nature, not concerned with objects in the

running program

• Sequence diagrams
• Relates method calls of objects in time
• Shows the time at which method calls are made

• Object diagrams
• Relationships of objects in a running system

• State diagrams
• Many others



Interesting Class Diagram
Notation

• Classes, methods, and data members

• Inheritance

• Relationships including expression of ownership

• Qualities such as constant

• Parameterized classes

• Using relationship

• Notes

• Hierarchical structuring of classes (packages)



Where it is Useful

• Capturing key design concepts

• Showing library or subsystem design

• Discussions and walkthroughs before
coding starts

• Reviews of already designed projects

• Roadmap for implementing the subsystem



Where it Helps

• Preventing an implementation that does not
satisfy the requirements

• Preventing an explosion of classes and
utilities from on-the-fly design

• The relationship of classes to other parts of
the system becomes visible



Where it has not Been Useful

• Capturing all implementation details
• Generating code from the diagrams

• The C++ code from the tool will likely not be
your style

• Mapping all the notation into C++ syntax is
complex

• Attempting to be very complete in the use
of notation

• Reverse engineering



Reverse Engineering

• Relationships are interpreted incorrectly

• Inexperience with C++ hurts
• Arrays as pointers (int*)

• Vectors of pointers to objects

• Division or grouping of classes is not
correct

• Rat’s net



Difficulties

• Keeping the diagrams in sync with the code
after the initial implementation is complete

• Expressing some generic programming
concepts
• type lookup within a class



Summary

• Great for capturing key design elements

• Should be used at the early stages of a package or
library

• Not good for capturing every implementation
detail

• Not good for reverse engineering

• Not good for code generation

• Not good for driving the entire development cycle



Current Recommendations

• Visio2000
• http://www.microsoft.com/office/visio/

• The Unified Modeling Language User
Guide, G.Booch, et al., Addison Wesley,
1999.


